martes, 15 de julio de 2008

El latón

El latón es cualquier aleación de Cobre y Zinc (Cu-Zn) se le conoce también con la denominación de cuzin o latones.
El latón, es una aleación que se realiza en
crisoles o en un horno de reverbero o de cubilote. Las proporciones de Cobre y Zinc pueden ser variadas para crear un rango de latones con propiedades variables. En los latones industriales el porcentaje de Zn se mantiene siempre inferior a 50%. Su composición influye en las características mecánicas, la fusibilidad, y la capacidad de conformación por fundición, forja, estampación y mecanizado. En frío, los lingotes obtenidos pueden transformarse en láminas de diferentes espesores, varillas o cortarse en tiras susceptibles de estirarse para fabricar alambres. Su densidad también depende de su composición. En general, la densidad del latón ronda entre 8,4gr / cm3 y 8,7gr / cm3
En cambio, el bronce es principalmente una aleación de cobre con estaño, No obstante, algunos tipos de latones son denominados bronces. El Latón es una aleación sustitucional, la cual es usada para decoración debido a su brillo de apariencia similar al del oro, para aplicaciones donde se requiere baja fricción, tales como cerraduras, válvulas, etc. Para plomería y aplicaciones eléctricas, y extensamente en instrumentos musicales como trompetas y campanas por sus propiedades acústicas.
El latón ha sido conocido por los humanos desde épocas prehistóricas, incluso antes de que el mismo zinc fuese descubierto. Este se producía por la mezcla de cobre junto con calamina, una fuente natural de zinc. En las villas alemanas de Breinigerberg un antiguo sitio romano fue descubierto donde existía una mina de calamina. Durante el proceso de mezclado, el zinc es extraído de la calamina y mezclado con el cobre. El zinc puro, por otra parte tiene un bajísimo punto de fusión como para haber sido producido por las antiguas técnicas del trabajo del metal.

Aplicaciones
El latón tiene un color
amarillo brillante, con gran parecido al oro y por eso se utiliza mucho en joyería conocida como bisutería, y elementos decorativos. Otras aplicaciones de los latones abarcan los campos más diversos, desde el armamento, calderería, soldadura, fabricación de alambres, tubos de condensador y terminales eléctricos. Como no es atacado por el agua salada, se usa también en las construcciones de barcos y en equipos pesqueros y marinos.
El latón no produce chispas por impacto mecánico, una propiedad atípica en las aleaciones. Esta característica convierte al latón en un material importante en la fabricación de envases para la manipulación de compuestos inflamables.


Materiales ferrosos
Los metales ferrosos son los que su principal componente es el hierro, sus principales características son su gran resistencia a la tensión y dureza. Las principales aleaciones se logran con el estaño, plata, platino, manganeso, vanadio y titanio.Los principales productos representantes de los materiales metálicos son:Fundición de hierro gris Hierro maleable Aceros Fundición de hierro blanco Su temperatura de fusión va desde los 1360ºC hasta los 1425ªC y uno de sus principales problemas es la corrosión.
No ferrosos
Los no ferrosos son todos los metales y aleaciones que no tienen en su composición química Hierro.PRIMERO: Se pueden clasificar según su densidad en:PESADOS, cuya densidad es igual o mayor de 5kg/dm cúbico. Tales como: Estaño, cobre, cinc, plomo, níquel, wolframio y cobalto. LIGEROS cuya densidad está comprendida entre 2 y 5kg/dm cúbico. Tales como: Aluminio y titanio.ULTRALIGEROS cuya densidad es menor de 2kg/dm cúbico. Tales como: magnesio y berilio.-----------------------------------------SEGUNDO: Propiedades De Los Metales No Ferrosos.No es apropiado categorizarlas de forma general, por lo tanto se citan de manera particular para cada material.
AluminioPropiedades: el aluminio es un metal blanco plateado y brillante en estado de alta pureza, es bastante dúctil y maleable comparado con su peso es bastante resistente mecánicamente, posee elevada conductividad térmica.CobrePropiedades: el cobre es un metal de color rojo, muy maleable dúctil el estado de alta pureza, posee una elevada conductividad térmica y eléctrica, el cobre en condiciones en los atmosféricas normales es bastante resistente a la corrosión, pero cuando la temperatura es húmeda se descubre con una capa verde jade platina o cardenillo que los protege de ulteriores ataques.EstañoPropiedades: el estaño es un metal de color blanco grisáceo parecido al de la plata, es suave, dúctil, y maleable pero muy poco resistente a la atracción, o sea casi carece de tenacidad, el metal al ser doblado produce un crujido a debido a la dislocación de sus cristales.MagnesioPropiedades: el magnesio es un metal de color blanco plateado brillante, es laminable entre 350 grados c y 400 grados c, es soluble con los ácidos diluidos exceptuando al ácido fluorhídrico, se alea Con mayoría de los metales exceptuando el hierro y el cromo, los metales con los metales con los que más se une como elemento aleado son el aluminio, cobre, cadmio, zinc y manganeso.NíquelPropiedades: en níquel es un metal blanco ligeramente pálido y brillante, es duro y muy tenaz cuando contiene una pequeña cantidad del carbono, se vuelve maleable dejándose laminar, pequeños porcentajes de magnesio, en muy resistente a la corrosión atmosférica, y aliado a hierro le imparte gran resistencia a la oxidación.PlomoPropiedades: el plomo es un metal de color gris azulado muy brillante, dentro del metales comunes es el más pesado, su elevada plasticidad le permite ser trabajado fácilmente en frió, este metal jamás debe de estar en contacto con las bebidas y alimentos.ZincPropiedades: el sí es un metal de color blanco azulino, funde a 419 grados c y hierve a 907 grados c, el zinc a temperatura ambiente es frágil, que resistente a la corrosión en condiciones normales, pero cuando se une el contacto con el aire húmedo se opaca al formarse una película bicarbonato básico de zinc.AntimonioPropiedades: el antimonio es un elemento duro y muy frágil pudiéndose granular y pulverizar fácilmente, desde color blanco, placas cristalino.

Estructura del acero
Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes.
La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.
Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida.
Tratamiento térmico del acero
El proceso básico para endurecer el acero mediante tratamiento térmico consiste en calentar el metal hasta una temperatura a la que se forma austenita, generalmente entre los 750 y 850 ºC, y después enfriarlo con rapidez sumergiéndolo en agua o aceite. Estos tratamientos de endurecimiento, que forman martensita, crean grandes tensiones internas en el metal, que se eliminan mediante el temple o el recocido, que consiste en volver a calentar el acero hasta una temperatura menor. El temple reduce la dureza y resistencia y aumenta la ductilidad y la tenacidad.
El objetivo fundamental del proceso de tratamiento térmico es controlar la cantidad, tamaño, forma y distribución de las partículas de cementita contenidas en la ferrita, que a su vez determinan las propiedades físicas del acero.
Hay muchas variaciones del proceso básico. Los ingenieros metalúrgicos han descubierto que el cambio de austenita a martensita se produce en la última fase del enfriamiento, y que la transformación se ve acompañada de un cambio de volumen que puede agrietar el metal si el enfriamiento es demasiado rápido.
Se han desarrollado tres procesos relativamente nuevos para evitar el agrietamiento. En el templado prolongado, el acero se retira del baño de enfriamiento cuando ha alcanzado la temperatura en la que empieza a formarse la martensita, y a continuación se enfría despacio en el aire. En el martemplado, el acero se retira del baño en el mismo momento que el templado prolongado y se coloca en un baño de temperatura constante hasta que alcanza una temperatura uniforme en toda su sección transversal. Después se deja enfriar el acero en aire a lo largo del rango de temperaturas de formación de la martensita, que en la mayoría de los aceros va desde unos 300 ºC hasta la temperatura ambiente. En el austemplado, el acero se enfría en un baño de metal o sal mantenido de forma constante a la temperatura en que se produce el cambio estructural deseado, y se conserva en ese baño hasta que el cambio es completo, antes de pasar al enfriado final.
Hay también otros métodos de tratamiento térmico para endurecer el acero. En la cementación, las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno. Estos compuestos reaccionan con el acero y aumentan su contenido de carbono o forman nitruros en su capa superficial.
En la carburización la pieza se calienta cuando se mantiene rodeada de carbón vegetal, coque o de gases de carbono como metano o monóxido de carbono. La cianurización consiste en endurecer el metal en un baño de sales de cianuro fundidas para formar carburos y nitruros. La nitrurización se emplea para endurecer aceros de composición especial mediante su calentamiento en amoníaco gaseoso para formar nitruros de aleación.
Ventajas y desventajas del acero como material de construcción:
Ventajas del acero como material estructural:
· Alta resistencia.- La alta resistencia del acero por unidad de peso implica que será poco el peso de las estructuras, esto es de gran importancia en puentes de grandes claros.
· Uniformidad.- Las propiedades del acero no cambian apreciablemente con el tiempo como es el caso de las estructuras de concreto reforzado.
· Durabilidad.- Si el mantenimiento de las estructuras de acero es adecuado duraran indefinidamente.
· Ductilidad.- La ductilidad es la propiedad que tiene un material de soportar grandes deformaciones sin fallar bajo altos esfuerzos de tensión. La naturaleza dúctil de los aceros estructurales comunes les permite fluir localmente, evitando así fallas prematuras.
· Tenacidad.- Los aceros estructurales son tenaces, es decir, poseen resistencia y ductilidad. La propiedad de un material para absorber energía en grandes cantidades se denomina tenacidad.
· Otras ventajas importantes del acero estructural son:
A) Gran facilidad para unir diversos miembros por medio de varios tipos de conectores como son la soldadura, los tornillos y los remaches.
B) Posibilidad de prefabricar los miembros de una estructura.
C) Rapidez de montaje.
D) Gran capacidad de laminarse y en gran cantidad de tamaños y formas.
E) Resistencia a la fatiga.
F) Posible rehuso después de desmontar una estructura.
Desventajas del acero como material estructural:
· Costo de mantenimiento.- La mayor parte de los aceros son susceptibles a la corrosión al estar expuestos al agua y al aire y, por consiguiente, deben pintarse periódicamente.
· Costo de la protección contra el fuego.- Aunque algunos miembros estructurales son incombustibles, sus resistencias se reducen considerablemente durante los incendios.
· Susceptibilidad al pandeo.- Entre más largos y esbeltos sean los miembros a compresión, mayor es el peligro de pandeo. Como se indico previamente, el acero tiene una alta resistencia por unidad de peso, pero al utilizarse como columnas no resulta muy económico ya que debe usarse bastante material, solo para hacer más rígidas las columnas contra el posible pandeo.
NOTA: El acero estructural puede laminarse en forma económica en una gran variedad de formas y tamaños sin cambios apreciables en sus propiedades físicas. Generalmente los miembros estructurales más convenientes son aquellos con grandes momentos de inercia en relación con sus áreas. Los perfiles I, T y L tienen esta propiedad.
Características de los aceros:
En este proyecto se van a emplear una serie de materiales dependiendo de la temperatura a la que trabaja el aparato al que va destinado ese material. Tenemos tres aceros a elegir; el acero al carbono que se empleará cuando trabajemos a temperaturas superiores de -28ºC, el acero inoxidable cuando trabajemos a temperaturas entre -28ºC y -45ºC y, por último, el acero con una aleación de 3,5% de níquel que se empleará a temperaturas inferiores a -45ºC.
A continuación se expondrán las características de cada uno de estos aceros.
Aceros al carbono:
Más del 90% de todos los aceros son aceros al carbono. Están formados principalmente por hierro y carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas.
Aceros inoxidables:
Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a al herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Se emplea para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de aviones o para cápsulas espaciales.
En la industria química y petroquímica, los aceros inoxidables ofrecen elevada resistencia a la corrosión y excelentes propiedades mecánicas así como un bajo costo de mantenimiento.
Los aceros inoxidables son más resistentes a la corrosión y a las manchas de los que son los aceros al carbono y de baja aleación. Este tipo de resistencia superior a la corrosión se produce por el agregado del elemento cromo a las aleaciones de hierro y carbono.
La mínima cantidad de cromo necesaria para conferir esta resistencia superior a la corrosión depende de los agentes de corrosión.
Las principales ventajas del acero inoxidable son:
· Alta resistencia a la corrosión.
· Alta resistencia mecánica.
· Apariencia y propiedades higiénicas.
· Resistencia a altas y bajas temperaturas.
· Buenas propiedades de soldabilidad, mecanizado, corte, doblado y plegado.
· Bajo costo de mantenimiento.
· Reciclable.
· Como consecuencia de diferentes elementos agregados como níquel, cromo, molibdeno, titanio, niobio y otros, producen distintos tipos de acero inoxidable, cada uno con diferentes propiedades.



COMPOSICION QUIMICAS DEL ACERO

· Acero es una aleación de hierro y carbono que contiene otros elementos de aleación, los cuales le confieren propiedades mecánicas especificas para su utilización en la industria metalmecánica. Aunque el Carbono es el elemento básico a añadir al Hierro, los otros elementos, según su porcentaje, ofrecen características especificas para determinadas aplicaciones, como herramientas, cuchillas, soportes

Existen dos formas de identificar los aceros: la primera es a través de su composición química, por ejemplo utilizando la norma AISI:
La Tabla 1 relaciona la nomenclatura AISI-SAE con los valores de resistencia, ductilidad y dureza, conceptos que se explicarán más adelante. Sirve para relacionar la composición química y las propiedades mecánicas de los aceros. En las Tablas 2 y 3 se entrega información detallada de la composición química de diversas aleaciones listadas en base su número AISI-SAE.

Aluminio
Elemento químico metálico, de símbolo Al, número atómico 13, peso atómico 26.9815, que pertenece al grupo IIIA del sistema periódico. El aluminio puro es blando y tiene poca resistencia mecánica, pero puede formar aleaciones con otros elementos para aumentar su resistencia y adquirir varias propiedades útiles. Las aleaciones de aluminio son ligeras, fuertes, y de fácil formación para muchos procesos de metalistería; son fáciles de ensamblar, fundir o maquinar y aceptan gran variedad de acabados. Por sus propiedades físicas, químicas y metalúrgicas, el aluminio se ha convertido en el metal no ferroso de mayor uso.
El aluminio es el elemento metálico más abundante en la Tierra y en la Luna, pero nunca se encuentra en forma libre en la naturaleza. Se halla ampliamente distribuido en las plantas y en casi todas las rocas, sobre todo en las ígneas, que contienen aluminio en forma de minerales de alúmino silicato. Cuando estos minerales se disuelven, según las condiciones químicas, es posible precipitar el aluminio en forma de arcillas minerales, hidróxidos de aluminio o ambos. En esas condiciones se forman las bauxitas que sirven de materia prima fundamental en la producción de aluminio.
El aluminio es un metal plateado con una densidad de 2.70 g/cm3 a 20ºC (1.56 oz/in3 a 68ºF). El que existe en la naturaleza consta de un solo isótopo, 2713Al. El aluminio cristaliza en una estructura cúbica centrada en las caras, con lados de longitud de 4.0495 angstroms. (0.40495 nanómetros). El aluminio se conoce por su alta conductividad eléctrica y térmica, lo mismo que por su gran reflectividad.
La configuración electrónica del elemento es 1s2 2s2 2p6 3s2 3p1. El aluminio muestra una valencia de 3+ en todos sus compuestos, exceptuadas unas cuantas especies monovalentes y divalentes gaseosas a altas temperaturas.
El aluminio es estable al aire y resistente a la corrosión por el agua de mar, a muchas soluciones acuosas y otros agentes químicos. Esto se debe a la protección del metal por una capa impenetrable de óxido. A una pureza superior al 99.95%, resiste el ataque de la mayor parte de los ácidos, pero se disuelve en agua regia. Su capa de óxido se disuelve en soluciones alcalinas y la corrosión es rápida.
El aluminio es anfótero y puede reaccionar con ácidos minerales para formar sales solubles con desprendimiento de hidrógeno.
El aluminio fundido puede tener reacciones explosivas con agua. El metal fundido no debe entrar en contacto con herramientas ni con contenedores húmedos.
A temperaturas altas, reduce muchos compuestos que contienen oxígeno, sobre todo los óxidos metálicos. Estas reacciones se aprovechan en la manufactura de ciertos metales y aleaciones.
Su aplicación en la construcción representa el mercado más grande de la industria del aluminio. Millares de casas emplean el aluminio en puertas, cerraduras, ventanas, pantallas, boquillas y canales de desagüe. El aluminio es también uno de los productos más importantes en la construcción industrial. El transporte constituye el segundo gran mercado. Muchos aviones comerciales y militares están hechos casi en su totalidad de aluminio. En los automóviles, el aluminio aparece en interiores y exteriores como molduras, parrillas, llantas (rines), acondicionadores de aire, transmisiones automáticas y algunos radiadores, bloques de motor y paneles de carrocería. Se encuentra también en carrocerías, transporte rápido sobre rieles, ruedas formadas para camiones, vagones, contenedores de carga y señales de carretera, división de carriles y alumbrado. En la industria aeroespacial, el aluminio también se encuentra en motores de aeroplanos, estructuras, cubiertas y trenes de aterrizaje e interiores; a menudo cerca de 80% del peso del avión es de aluminio. La industria de empaques para alimentos es un mercado en crecimiento rápido.
En las aplicaciones eléctricas, los alambres y cables de aluminio son los productos principales. Se encuentra en el hogar en forma de utensilios de cocina, papel de aluminio, herramientas, aparatos portátiles, acondicionadores de aire, congeladores, refrigeradores, y en equipo deportivo como esquíes y raquetas de tenis.
Existen cientos de aplicaciones químicas del aluminio y sus compuestos. El aluminio en polvo se usa en pinturas, combustible para cohetes y explosivos y como reductor químico.


Características físicas
Entre las características físicas del aluminio, destacan las siguientes:
Es un metal ligero, cuya densidad o peso específico es de 2700 kg/m3 (2,7 veces la densidad del agua).
Tiene un punto de fusión bajo: 660ºC (933 K).
El peso atómico del aluminio es de 26,9815.
Es de color blanco brillante.
Buen conductor del calor y de la electricidad.
Resistente a la corrosión, gracias a la capa de Al2O3 formada.
Abundante en la naturaleza.
Material fácil y barato de reciclar
Características mecánicas
Entre las características mecánicas del aluminio se tienen las siguientes:
De fácil mecanizado.
Muy maleable, permite la producción de láminas muy delgadas.
Bastante dúctil, permite la fabricación de cables eléctricos.
Material blando (Escala de Mohs: 2-3). Límite de resistencia en tracción: 160-200 N/mm2 [160-200 MPa] en estado puro, en estado aleado el rango es de 1400-6000 N/mm2. El duraluminio es una aleación particularmente resistente.
Material que forma aleaciones con otros metales para mejorar las propiedades mecánicas.
Permite la fabricación de piezas por fundición, forja y extrusión.
Material soldable.

Características químicas

Estructura atómica del aluminio.
Debido a su elevado estado de oxidación se forma rápidamente al aire una fina capa superficial de óxido de aluminio (Alúmina Al2O3) impermeable y adherente que detiene el proceso de oxidación, lo que le proporciona resistencia a la corrosión y durabilidad. Esta capa protectora, de color gris mate, puede ser ampliada por electrólisis en presencia de oxalatos.
El aluminio tiene características anfóteras. Esto significa que se disuelve tanto en ácidos (formando sales de aluminio) como en bases fuertes (formando aluminatos con el anión [Al(OH)4]-) liberando hidrógeno.
La capa de oxido formada sobre el aluminio se puede disolver en ácido cítrico formando citrato de aluminio.
El principal y casi único estado de oxidación del aluminio es +III como es de esperar por sus tres electrones en la capa de valencia.
El aluminio reacciona con facilidad con HCl, NaOH, perclórico, pero en general resiste la corrosión debido al óxido. Sin embargo cuando hay iones Cu++ y Cl- su pasivación desaparece y es muy reactivo.
Los alquilaluminios, usados en la polimerización del etileno,[5] son tan reactivos que destruyen el tejido humano y producen reacciones exotérmicas violentas al contacto del aire y del agua.[6]
El óxido de aluminio es tan estable que se utiliza para obtener otros metales a partir de sus óxidos (Cromo, Manganeso, etc.) por el proceso aluminotérmico
El cobre y sus propiedades
El cobre de símbolo Cu, es el elemento químico de número atómico 29. Se trata de un metal de transición de color rojizo y brillo metálico que, junto con la plata y el oro, forma parte de la llamada familia del cobre, caracterizada por ser los mejores conductores de electricidad. Gracias a su alta conductividad eléctrica, ductilidad y maleabilidad, se ha convertido en el material más utilizado para fabricar cables eléctricos y otros componentes eléctricos y electrónicos.
El cobre forma parte de una cantidad muy elevada de aleaciones que generalmente presentan mejores propiedades mecánicas, aunque tienen una conductividad eléctrica menor. Las más importantes son conocidas con el nombre de bronces y latones. Por otra parte, el cobre es un metal duradero porque se puede reciclar un número casi ilimitado de veces sin que pierda sus propiedades mecánicas.
Fue uno de los primeros metales en ser utilizado por el ser humano en la prehistoria. El cobre y su aleación con el estaño, el bronce, adquirieron tanta importancia que los historiadores han llamado Edad del Cobre y Edad del Bronce a dos periodos de la Antigüedad. Aunque su uso perdió importancia relativa con el desarrollo de la siderurgia, el cobre y sus aleaciones siguieron siendo empleados para hacer objetos tan diversos como monedas, campanas y cañones. A partir del siglo XIX, concretamente de la invención del generador eléctrico en 1831 por Faraday, el cobre se convirtió de nuevo en un metal estratégico, al ser la materia prima principal de cables e instalaciones eléctricas.
El cobre posee un importante papel biológico en el proceso de fotosíntesis de las plantas, aunque no forma parte de la composición de la clorofila. El cobre contribuye a la formación de glóbulos rojos y al mantenimiento de los vasos sanguíneos, nervios, sistema inmunológico y huesos y por tanto es un oligoelemento esencial para la vida humana.[9]
El cobre se encuentra en una gran cantidad de alimentos habituales de la dieta tales como ostras, mariscos, legumbres, vísceras y nueces entre otros, además del agua potable y por lo tanto es muy raro que se produzca una deficiencia de cobre en el organismo. El desequilibrio de cobre ocasiona en el organismo una enfermedad hepática conocida como enfermedad de Wilson.[10]
El cobre es el tercer metal más utilizado en el mundo, por detrás del acero y el aluminio. La producción mundial de cobre refinado se estimó en 15,8 Mt en el 2006, con un déficit de 10,7% frente a la demanda mundial proyectada de 17,7 Mt.[11
MATERIALES NO FERROSOS
Los metales no ferrosos se clasifican en tres grupos:
· Pesados: son aquellos cuya densidad es igual o mayor de 5 kg/dm³,
· Ligeros: su densidad esta comprendida entre 2 y 5 kg/dm³.
· Ultraligeros: su densidad es menor de 2 kg/dm³.
Metales no ferrosos pesados:
 Estaño (Sn)
o Características: se encuentra en la casiterita; su densidad es de 7,28 kg/dm³, su punto de fusión alcanza los 231ºC; tiene una resistencia a la tracción de 5 kg/mm²; en estado puro tiene un color muy brillante, pero a temperatura ambiente se oxida y lo pierde; a temperatura ambiente es también muy maleable y blando, sin embargo en caliente es frágil y quebradizo; por debajo de -18ºC se empieza a descomponer convirtiéndose en un polvo gris, este proceso es conocido como peste del estaño; al doblarse se oye un crujido denominado grito del estaño.
o Aleaciones: las más importantes son el bronce (cobre + estaño) y las soldaduras blandas (plomo + estaño con proporciones de este entre el 25% y el 90%)
o Aplicaciones: sus aplicaciones más importantes son la fabricación de hojalata y proteger al acero contra la oxidación.